
Nowhere to Hide: Detecting Live Video Forgery via
Vision-WiFi Silhouette Correspondence

Xinyue Fang1,2, Jianwei Liu1,2, Yike Chen1,2, Jinsong Han�1,3, Kui Ren1,2, and Gang Chen4

1School of Cyber Science and Technology, Zhejiang University, China
2ZJU-Hangzhou Global Scientific and Technological Innovation Center, China

3Key Laboratory of Blockchain and Cyberspace Governance of Zhejiang Province, China
4College of Computer Science and Technology, Zhejiang University, China

{xinyuefang, jianweiliu, chenyike, hanjinsong, kuiren, cg}@zju.edu.cn

Abstract—For safety guard and crime prevention, video
surveillance systems have been pervasively deployed in many
security-critical scenarios, such as the residence, retail stores, and
banks. However, these systems could be infiltrated by the adver-
sary and the video streams would be modified or replaced, i.e., un-
der the video forgery attack. The prevalence of Internet of Things
(IoT) devices and the emergence of Deepfake-like techniques
severely emphasize the vulnerability of video surveillance systems
under such attacks. To secure existing surveillance systems, in
this paper we propose a vision-WiFi cross-modal video forgery
detection system, namely WiSil. Leveraging a theoretical model
based on the principle of signal propagation, WiSil constructs
wave front information of the object in the monitoring area from
WiFi signals. With a well-designed deep learning network, WiSil
further recovers silhouettes from the wave front information.
Based on a Siamese network-based semantic feature extractor,
WiSil can eventually determine whether a frame is manipulated
by comparing the semantic feature vectors extracted from the
video’s silhouette with those extracted from the WiFi’s silhouette.
Extensive experiments show that WiSil can achieve 95% accuracy
in detecting tampered frames. Moreover, WiSil is robust against
environment and person changes.

Index Terms—WiFi Sensing, Video Forgery Detection, Deep
Learning

I. INTRODUCTION

Video/camera-based surveillance systems have been applied

in a wide spectrum of applications, such as retails, banks,

and logistics [1]. They can either prevent criminals or pre-

serve visual evidence. With the development of IoT, these

surveillance systems become more distributed, low-cost and

autonomous, yet raising security risks. In particular, poor

security management, e.g., using default passwords or weak

remote access control, exacerbates the vulnerability towards

adversaries. In this paper, we focus on the forgery attack [2], in

which the attacker could hijack the camera [3] or the camera’s

connection Ethernet cable [4] to manipulate the live surveil-

lance video streams. As a result, authentic frames could be

replaced by fake ones. Even worse, the emergence of Deepfake

techniques [5], [6] leads forge videos to be indistinguishable

from real ones. Thus, the forgery attack severely threatens the

authenticity and trustworthiness of existing video surveillance

systems.

Xinyue Fang and Jianwei Liu are co-first authors.

The above threat reveals an urgent need to guarantee the

trustworthiness of videos for surveillance systems. To this

end, a large number of approaches have been proposed to

detect forgery frames in suspicious videos. However, these

schemes have their respective shortcomings. For example,

watermark-based approaches need to adopt extra dedicated

modules in cameras, which is hard to satisfy for mainstream

cameras [2]. Video forensics approaches [7], [8], [9], [10],

[11] usually extract temporal-spatial features from continuous

frames to achieve fine-grained forgery detection. Nevertheless,

such feature extraction would impose a penalty of high com-

putational overhead and latency, which hinders their usage in

live videos [2].

Given the fact that WiFi infrastructures have been deployed

ubiquitously, along with the fine-grained sensing ability of

WiFi signals [12], it is promising to treat WiFi channel as

another trusted factor to help detect forged videos in a real-

time and fine-grained manner. Pioneering approaches, e.g.,

[13] and [2], have demonstrated the feasibility of video looping

detection and frame forgery detection using WiFi signals.

However, existing approaches are either unable to realize fine-

grained forged frame localization or can only detect the pres-

ence of human bodies. Considering that committing crimes via

robots or trained animals has become more common [14], it is

necessary to achieve real-time, fine-grained and environment-

independent video forgery detection systems via ubiquitous

WiFi signals, which can detect different kinds of intrusions,

including humans, robots, animals, etc.

Achieving such a system, however, is non-trivial due to

the following challenges. (1) To establish the correspondence

between the video and WiFi, we need to find an ‘intermediate’

that satisfies the following two requirements. First, it can be

extracted from both the video and WiFi. Second, no matter

from video or WiFi, it can reflect the same kind of information

about the object in the monitoring area. However, it is difficult

to construct such an intermediate for two multi-modal signals,

not to mention that WiFi signals are extremely complicated

and unstructured [15]. (2) To further obtain robust and accurate

correspondence of the intermediates between video and WiFi

signals, the intermediate should record the same information

about the object in the monitoring area, i.e., the perspective
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Fig. 1. Illustration of WiSil. By comparing the silhouette extracted from
a frame with that extracted from corresponding WiFi signals, WiSil can
determine whether the frame is manipulated or not.

of both the camera and WiFi channel should be as close

to each other as possible. Nevertheless, it is impractical for

them to owe the same perspective, because the WiFi antenna

is omnidirectional and WiFi sensing is weakly dependent

on the perspective. Thus, there are significant perspective

differences between these two sensing mediums, which would

impair the correspondence and degrade the forgery detection

performance.

By addressing the above challenges, we propose a WiFi-

assisted video forgery detection system, namely WiSil. As

shown in Fig. 1, by establishing the correspondence between

the video and trusted WiFi channel, WiSil is able to detect and

locate falsified frames in the live video stream. On one hand,

WiSil can be used to timely detect illegal activities erased by

the attacker in the video surveillance systems. On the other

hand, WiSil enables the WiFi measurements to be preserved

as a verification factor for the video forensics systems.

Specifically, to tackle the first challenge, we propose a new

intermediate, named silhouette, which meets the aforemen-

tioned two requirements. We noticed that the outline infor-

mation, i.e., silhouette, of the object in the monitoring area

can be derived from video frames via vision-based techniques,

while the wave front [16] of WiFi signals can also reveal

such information. We thereby dig the WiFi signal propagation

and build a theoretical model to construct the wave front of

objects from the channel state information (CSI) [17] of WiFi

signals. Then, with a well-designed learning model, we can

recover silhouette from the wave front and hence establish

the correspondence between the video and WiFi. Since the

wave front is only related to the dynamics of objects, i.e.,

being environment-independent, our silhouette construction

approach is robust against environment variations. To deal

with the second challenge, instead of directly comparing

the differences between the two silhouettes, we design a

Siamese network-based [18] feature extractor to mine semantic

features that are robust against perspective differences from

silhouette, i.e., enabling a perspective-insensitive matching. By

calculating the matching degree of the two semantic feature

vectors, we can determine if the two corresponding silhouettes

are similar, i.e., whether the video frame is manipulated or not.

We build a prototype of WiSil with commercial off-the-

(a) Original frame. (b) Replaced frame. (c) Modified frame.
Fig. 2. Examples of frame forgery attack: (b) frame-replacement attack and
(c) frame-modification attack.

shelf (COTS) devices and perform extensive experiments. The

experiment results show that WiSil can achieve over 95% accu-

racy in detecting faked frames. Meanwhile, it is able to detect

intrusions from various kinds of objects, including humans

and robots. Moreover, WiSil is robust against environment

and person variations. In a summary our contributions are as

follows:

• We propose a real-time, fine-grained, and environment-

independent video forgery detection system, WiSil. It is

capable of localizing tampered frames and allows the

WiFi channel to be preserved as the additional evidence

in video surveillance and forensics systems.

• We build the correspondence between video and WiFi by

extracting the same outline information, i.e., silhouettes,

from both of them. We propose a learning-based approach

to recover the silhouette of the object from WiFi signals.

• We prototype WiSil with COTS devices and perform

extensive experiments. The experiment results show that

WiSil can achieve high faked forgery detection accuracy,

Meanwhile, it is robust against environment and person

changes.

II. BACKGROUND AND THREAT MODEL

We focus on enhancing the security of the video surveillance

systems that have been pervasively deployed in common sce-

narios, e.g., retail stores, banks, and logistics centers. In these

systems, cameras are employed in a fixed way to monitor what

is happening in the areas of interest. The target objects are the

ones that intrude the monitoring areas, including humans and

robots. Generally, the cameras have built-in Web servers and

provide interfaces, e.g., Ethernet ports, so that any authorized

client from network can remotely access, record, and retrieve

the generated video data.

However, such surveillance systems could be compromised

through illegal infiltration. An attacker can scan the relevant

protocols and ports, browse the device management page,

or even leverage the system vulnerabilities to intrude the

system [1]. After that, the attacker can trigger video forgery

attacks, i.e., frame-replacement attacks and frame-modification

attacks. In the frame-replacement attack, the attacker replaces

a number of original video frames with fake frames, as

shown in Fig. 2. In the frame-modification attack, the attacker

modifies the video by removing the content about some events

that really happen, or adding certain events that actually
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Fig. 3. Workflow of WiSil.

unhappen in the monitoring area. The photoshop [19] and

AI-assisted technologies (DeepFake [5], [6]) can be applied

in frame-modification attacks, making manipulated videos

indistinguishable from normal ones.

We assume that there are WiFi facilities in the surveillance

area. It is easy to meet because WiFi infrastructures have been

deployed nearly everywhere. We also assume that the WiFi

signals are authentic, because it is nearly impossible to ma-

nipulate complicated and unstructured WiFi measurements [2].

III. SYSTEM OVERVIEW

To secure video-based surveillance and forensics systems,

WiSil recovers the silhouette of the object in the monitoring

area from reliable WiFi signals. By comparing the silhouette

extracted from the frame with that extracted from the WiFi

signal, WiSil is able to determine if a frame is manipulated.

Taking as input the video signals frame by frame, WiSil
can be used to timely localize falsified frames in live video

streams. This not only can help security personnel find out on-

going illegal intrusions in real time, but also enables the WiFi

channel to be preserved as an additional security guarantee for

the video forensics system.

As shown in Fig. 3, WiSil is primarily composed of

three modules: data preprocessing, silhouette construction, and

frame forgery detection. The data preprocessing module takes

both the video frames and WiFi signals as inputs to perform

denoising and segmentation. The processed signals are then

fed into the second module. In the second module, WiSil first

transforms the frame into the silhouette via a vision-based

technique, i.e., Mask R-CNN [20]. Then, the wave front is

extracted from WiFi signals based on a theoretical model.

With a pre-trained U-Net [21], WiSil reconstructs the silhouette

from the wave front information. Lastly, in the third module,

WiSil leverages a Siamese network-based structure to match

the silhouette of the frame against that of WiFi. If it does not

match, WiSil would alarm the user that the frame is faked.

� Data preprocessing. This module plays the essential role of

providing clean WiFi samples and synchronized video frames

for the next module. The main processes include removing the

noise from WiFi signals through filtering and synchronizing

the video frames and WiFi samples based on their sampling

rates. We will elaborate on this module in Sec. IV.

� Silhouette construction. With the clean WiFi signals

extracted from the reflection on the surface of the target (i.e.,

the object in the monitoring area), we first set an image plane

with a coordinate system to compute the wave front of the

reflector on the target. Then, we apply a pre-trained deep

learning model to transform the wave front into the silhouette.

In this process, we also extract the silhouette from the frame

via a Mask R-CNN. The silhouette construction approach is

detailed in Sec. V.

� Frame forgery detection. After obtaining the silhouettes

from both the frame and WiFi, WiSil tries to match be-

tween them. With a well-designed Siamese network-based

architecture, WiSil quantifies the matching degree of the two

silhouettes. If the matching degree of a frame is smaller

than an acceptance threshold we set in advance, this frame

is considered to be manipulated. Otherwise, this frame is

authentic. The details of this process are introduced in Sec. VI.

IV. DATA PREPROCESSING

Raw WiFi CSI contains environment and hardware noise

that is irrelevant to the wave front of the moving object.

Therefore, in the data preprocessing module, we utilize a series

of denoising methods to obtain clean CSI measurements. In

addition, to establish an accurate correspondence between the

frame and CSI, the video should be synchronized with WiFi.

To this end, we propose a fitting-resampling and segmentation

method to assign a synchronized CSI sample to each frame.

Note that in the following of this section, all the operations

towards WiFi signals will be performed on each subcarrier.

A. Signal Denoising

Generally, the WiFi signals which traverse through the

line-of-sight (LOS) path always incur low frequency noise,

while burst noises caused by low-cost COTS devices would

bring high frequency [22], [23]. Both kinds of noise exhibit

extremely high/low values of CSI measurements. Therefore,

we first apply a median filter to remove those noises. Then, we

utilize a mean filter to suppress slight oscillations in the CSI

sequences filtered by the median filter. It is worth noting that

when objects move between WiFi transceivers, the Doppler

effect would lead to continuous changes in the frequency

observation. Meanwhile, the relative motion always has a low

frequency. So, a low-pass Butterworth filter [24] with 20Hz

cut-off frequency is applied to remove high-frequency noise

for a much smoother CSI sequence.

B. Multi-Modal Signal Synchronization

� Fitting-resampling. During the WiFi transmission, the

WiFi packets could be lost due to the occlusion of the object

and hardware imperfection. In this case, WiSil sometimes

cannot obtain the same number of CSI measurements in a

fixed-length period (e.g., a period used to sample a frame),

resulting in an issue that we cannot unify the dimensionality

of the CSI sample assigned to each frame. To solve this

problem, we propose a fitting-resampling method based on

our observation that the variation trace of the CSI in a short

period looks like a cubic function of time t and measurement

y. Specifically, we first perform cubic polynomial fitting on the



CSI of each period tp. We then resample on the fitted cubic

polynomial with equal and short time interval Δt. In this way,

WiSil can obtain
tp
Δt CSI measurements in every fixed-length

period.

� Segmentation. Next, we need to synchronize the video and

WiFi through segmentation. The goal is to guarantee that each

frame is assigned with a CSI sample and they are captured in

the same time period. Since the sampling rate of WiFi packets

is generally larger than that of video frames, each frame should

be associated with multiple WiFi packets. Specifically, when

the camera and WiFi transmitter are started at the same time

tstart, the first frame should be assigned with the CSI sample

of SRw

SRv
successive packets after tstart, where SRw and SRv

are the sampling rates of the packet and frame. respectively.

Owing to that we have performed fitting-resampling on the

CSI sequences, each following frame can be assigned with a

CSI sample with unified dimensionality (SRw

SRv
, Nf ), where Nf

is the number of subcarriers.

V. SILHOUETTE CONSTRUCTION

WiSil achieves video forgery detection by comparing the

silhouette of the frame with that of the CSI. To this end, an

intuitive solution is to directly extract the silhouette from the

frame using the vision-based technique (i.e., Mask R-CNN).

However, it is impractical to do so with WiFi signals be-

cause they are unstructured without any human eye-perceptible

information. Thus we cannot extract the outline information

from WiFi signals via vision-based technologies like Mask R-

CNN. To address this challenge, in this section, we propose

a learning-based method to recover the silhouette from WiFi

CSI. We observe that the wave front of WiFi signals can

reveal the outline information of the object. We thereby build

a theoretical model based on the real signal propagation to

extract the wave front from the WiFi CSI. Then, we treat the

silhouettes of the frames as the annotations of the CSI samples

to train a U-Net. With the well-trained U-Net, we are able to

recover silhouettes from WiFi signals.

O
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Fig. 4. Coordinate system for wave front extraction.

A. Wave Front Extraction

With the clean WiFi signals extracted from the reflection

on the surface of the target, we can construct the wave front

at the target side. We illustrate the scene in Fig. 4, where the

target is in front of the receiver antennas.

As shown in Fig. 4, we first define a spatial coordinate

system, and the receiver antennas are placed at the origin (0,

0, 0). According to [16], we can also define an image plane

where the wave front is constructed on. The image plane is

vertical to the ground. The target consists of many reflectors

and each of them can respond to a wave front. We take one of

the reflectors as the example to study the way to construct the

wave front. We assume that a reflector of the target is denoted

as wp,q , and its coordinate vector is �Lp,q = (xp,q, yp,q, zp,q) =
(p, dp,q, q), with the azimuth angle γp = arctan(p/dp,q) and

the elevation angle βq = arctan(q/
√
p2 + d2p,q). The value

of dp,q on the Y-axis is the depth information of the reflector,

whose coordinate on the image plane is (p, q). We can get a

more specific coordinate vector of the reflector as follows:

�Lp,q = (dp,qtan(γp), dp,q,
dp,qtan(βq)

cos(γp)
). (1)

To recover the wave front, we assume that there is a virtual

transmitter’s antenna at the position of the reflector, indicated

as sp,q . This virtual transmitter produces signals with the

same intensity and phase as the reflector. Then, we can derive

the phase shift along the path between the reflector and the

receiver’s antennas, where the length of path is |�Lp,q|. After

propagation, the signal received by the receiver antennas is

known as sRx
p,q . We can describe the relationship between the

wave front sp,q and the received signal sRx
p,q as follows:

sRx
p,q = αsp,qexp(−j2π

|�Lp,q|
λ

), (2)

where α is the amplitude attenuation factor and λ is the

wavelength of WiFi. Besides, we define a function Kp,q to

represent the phase shift of each reflector wp,q:

Kp,q = exp(−j2π
|�Lp,q|
λ

). (3)

We aim at recovering the wave fronts S � [sp,q]P,Q of all

reflectors, i.e. all points ∀p ∈ [1, P ] and ∀q ∈ [1, Q] on the

image plane. To achieve it, the CSI measurement S(t, f), with

packet t and subcarrier frequency f , is mapped to the function

Kp,q as follows:

S(t, f) =
P∑

p=1

Q∑
q=1

αsp,qKp,q. (4)

Now the CSI measurement S(t, f) is known. We observe

that Eq. 4 is similar with 2D Inverse Fast Fourier Transforma-

tion (2D IFFT). Therefore, we convert the goal of recovering

wave fronts into a 2D IFFT problem via the relative motion

between the transceiver and the target. We denote the velocity

of the relative motion along Y-axis as vy . Then, in the

period Δt, the instantaneous displacement can be calculated

as �dp,q = (0, vyΔt, 0) with the direction
�Lp,q

|�Lp,q| , while the

initial position of the reflector is (p, dp,q, q) with the distance

|�Lp,q|t0 . Thus, we can use function Kp,q to represent the phase
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shift varying with time as follows:

Kp,q = exp (−j2π(|�Lp,q|t0 + �Δdp,q ·
�Lp,q

|�Lp,q|
)/λ)

= exp (−j2π
|�Lp,q|t0

λ
) · exp (−j2πvy

(cosγcosβ)t

λ
).

(5)

Here, We only need to consider the change of variable t. After
we replace λ in Eq. 5 with the wavelength λc of the central
frequency fc, Eq. 4 can be represented as follows:

S(t, f) =

P∑

p=1

Q∑

q=1

αsp,q exp (−j2π(
fc
c
|�Lp,q|t0 +

vy(cosγcosβ)t

λc
)).

(6)

Since α is a constant which can be unified, Eq. 6 is a standard

2D Fast Fourier Transformation (2D FFT) with the input signal

g(p, q) and the output signal G(a, b). The packet t and the

subcarrier frequency f is corresponding to the variable a and

the variable b. Then, we replace
|�Lp,q|t0

c by p, and
vy(cosγcosβ)

λc

by q, Eq. 6 can be converted as follows:

G(a, b) =
P∑

p=1

Q∑
q=1

g(p, q) exp (−j2π(a · p

P
+ b · q

Q
)). (7)

Note that S(t, f) is known from the CSI measurement, i.e.

G(a, b) in Eq. 7. Thus we can apply 2D IFFT to compute

g(p, q), i.e. sp,q . After that, we can recover the wave front

S � [sp,q]P,Q.

B. Recovering Silhouette From Wave Front

After obtaining the wave front of each reflector on the image

plane, we apply a U-Net to transform it into the silhouette.

� Data annotation and model input. We transfer the wave

front of each reflector to the 3D tensors with dimensionality of

(Nf
SRw

SRv
, Ntra, Nrec) as the input of our deep learning model,

where Nf , Ntra, and Nrec are the number of the frequency,

the transmit antennas, and the receive antennas, respectively.

The WiFi transceiver and the camera work simultaneously

while collecting the training set. In the training set, each wave

front tensor is labeled by the silhouette extracted from its

corresponding frame. The dimensionality of each silhouette

is (Nrow, Ncol), where Nrow and Ncol are the number of the

pixels in a row and a column, respectively.

� Network architecture. The main part of our deep learning

network is a semantic segmentation extractor based on U-

Net. It can extract the outline feature of the target and then

generate its silhouette. The network architecture is shown in

Fig. 5. We begin with downsampling the input data to increase

(a) Original frame. (b) Silhouette extracted
from frame.

(c) Silhouette recovered
from CSI.

Fig. 6. Silhouette construction results.

the Receptive Field (RF), so that the convolution operation

can learn to extract more features. We then upsample the

data for turning the low-resolution feature maps into high

resolution feature maps. The reason why the input data can

be mapped to the silhouette is that the 3D input data contains

temporal information, wave front, and transceiver pairs among

antennas. Due to the different distances and angles between

the antenna pairs, multiple different descriptions of the same

silhouette can be derived. In the convolutional operation, these

descriptions can reconstruct 2D information of the silhouette

by reorganizing and reweighing.

� Loss function. We encode the U-Net in our system to

represent the silhouette. To force the network to focus on the

target rather than the background, We define an efficient loss

as flows :

L(i,j,k) = weight(i,j,k) · ||ỹ(i,j,k) − y(i,j,k)||2, (8)

where weight(i,j,k) is the element-wise weight at index

(i, j, k). We use Matthew Weight [25] to achieve the opti-

mizing attention mechanism on the wave front data:

weight(i,j,k) =

{
k · y(i,j,k) + b y(i,j,k) � 0
k · y(i,j,k) y(i,j,k) < 0.

(9)

Figure. 6(a), (b), and (c) show an original frame, the

silhouette extracted from the frame, and the silhouette recov-

ered from CSI, respectively. It can be seen that the outline

information of the person in Fig. 6(a) is accurately described

by Fig. 6(c).

VI. FRAME FORGERY DETECTION

So far, we have recovered the silhouette from WiFi signals.

The recovered silhouette can reveal the real activities of the

objects in the area under surveillance. To determine if a frame

recorded by the camera is manipulated, we need to match

the silhouette extracted from the frame against that recovered

from the corresponding CSI sample. If the matching fails, the

tested frame is extremely likely to be falsified; otherwise, we

regarded the tested frame as an authentic one.

To do so, a straightforward method is to directly calculate

the differences between pixels in these two silhouettes, and

then count none-zero elements in the differences [2]. However,

such a ‘brute-forth’ like method is susceptible to the noise, i.e.,

small outline offset of the object in the silhouettes would result

in false positives. Considering that the perspectives of the

camera and WiFi are impossible to be completely consistent,

slight outline differences of the moving object between the two

silhouettes may exist (e.g., the differences between Fig. 6(b)

and (c)). In this case, a wise matching strategy is to compare
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the semantic similarity between the two silhouettes, rather than

the pixel similarity.

It is widely known that Siamese network is significantly

effective in comparing the similarity between two signature-

like inputs [18]. Generally, a normal person cannot write two

identical signatures, but Siamese network can accurately judge

whether two signatures are from the same person by extract-

ing deep semantic features. Analogically, we are inspired to

design a Siamese network-based feature extractor to extract

similarity-related semantic features from the two different

kinds of silhouettes. With the semantic features extracted from

the frame-associated and WiFi-associated silhouettes, we can

quantify their matching degree by calculating the distance

between them.

� Structure of semantic feature extractor. As shown in

Fig. 7, our feature extractor has two branches that share

the same structure and parameters. It takes as inputs two

silhouettes (one from the frame and the other from WiFi). Each

silhouette is fed into an individual branch. In each branch,

the feature extractor uses three two-dimensional convolutional

layers to mine deep similarity-related semantic features from

the silhouettes. The size of the convolutional kernel and the

sliding stride are respectively set to (3, 3) and (2, 2). Each con-

volutional layer is followed by a batch normalization function

(BN), a rectified linear unit (ReLU), and a dropout layer. The

BN is utilized to prevent the offset of data distribution. The

ReLU is used to decrease the dependence among neurons to

improve the generalization ability of the feature extractor. As

for the dropout layer, it is responsible for reducing the prob-

ability of being overfitting, which also enhances the feature

extractor’s generalization ability. After the last dropout layer,

we add two fully-connected layers to project high-dimensional

deep features into low-dimensional semantic feature vectors.

A ReLU activation function is added behind the first fully-

connected layer to increase the non-linearity, thus improve

the feature extractor’s ability of processing complex tasks.

Finally, each branch would output a semantic feature vector

with dimensionality of (1, Nfea), where Nfea is set to 64

empirically.

� Training strategy and loss functions. To make the fea-

ture extractor possess the ability of mining similarity-related

semantic features, we should train it on both positive pairs

and negative pairs. The former contains the silhouette from a

manipulated frame and that of its corresponding CSI sample,
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Fig. 8. Experiment setup.

which are dissimilar to each other. In contrast, the latter is

composed of the silhouette from a normal frame and that of

its corresponding CSI sample, which are similar to each other.

The similarity labels of the positive pair and the negative pair

are set to 1 and 0, respectively. We use contrastive loss [15]

to optimize the feature extractor, which can be formulated as:

Lcon = (1− Y )
Dw

2

2
+ Y

max{0,m−Dw}2
2

, (10)

where Y is the similarity label and m is a hyper-parameter

set to 2 empirically. Dw is the Euclidean distance between

the two feature vectors X1 = [x1
1, x

2
1, · · · , xn

1 ] and X2 =
[x1

2, x
2
2, · · · , xn

2 ], which can be calculated by:

Dw =
√

(x1
1 − x1

2)
2 + (x2

1 − x2
2)

2 + · · ·+ (xn
1 − xn

2 )
2.
(11)

With the contrastive loss, we can update the parameters of the

feature extractor through back propagation [26].

� Matching degree quantification. After obtaining the

similarity-related semantic feature vectors of the two silhou-

ettes, we need to determine if they can match each other. In

particular, we still leverage Euclidean distance to quantify the

matching degree between them. The matching degree can be

calculated by:

MD =
1

Dw(X1, X2)
. (12)

Next, we set an acceptance threshold (empirically set to 0.83)

to determine the final matching result. If MD is larger than

or equals to the threshold, the tested frame is considered to be

authentic; otherwise, we regarded it as a faked frame. In live

video inspection, WiSil localizes the fake frame by taking as

input the video stream in a frame-by-frame manner.

VII. EVALUATION

This section first describes the implementation of WiSil, and

then details its quantitative performance.

� Experiment setup. As shown in Fig. 8, we implement WiSil
on three COTS devices: a Nuoxin camera and two Lenovo

ThinkPad laptops equipped with Intel 5300 Network Interface

Cards (NICs). One NIC is used as the WiFi transmitter and

the other as the receiver. Each NIC is equipped with three

antennas. The camera and the WiFi transceivers are placed

1.5 m and 60 cm off the ground, respectively. The transmitter

is 5.3 m away from the receiver. In the default setting, we

collect data in the laboratory environment shown in Fig. 8.



Fig. 9. TPR of WiSil. Fig. 10. FPR of WiSil. Fig. 11. Accuracy of WiSil.

Fig. 12. TPR of cross-environment experiments. Fig. 13. FPR of cross-environment experiments. Fig. 14. Accuracy of cross-environment experi-
ments.

The sampling rate of the video is 10 frames per second, while

that of the WiFi channel is 100 packets per second. Besides,

We use a Dell personal computer with 3GHz i7-9700 CPU to

perform data processing. CSI is extracted from WiFi packets

via PicoScenes measurement tools [27]. All the experiments

are conducted by adhering to the approval of our university’s

Institutional Review Board (IRB).

� Data collection. We invite 11 volunteers, including four

females and seven males (with heights ranging from 156 cm

to 184 cm, and aged from 22 to 30), to participate in our

experiments. We ask the participants (1/2/3/4 persons) to move

in the monitoring area for at least ten minutes. We also use

a remote control car (with 20 cm length, 8.5 cm width, and

4.5 cm height) to act as an illegal robot. We totally collect

103000 frame-CSI pairs (half of them are positive). Therein,

36500 pairs (30000 for persons and 6500 for the robot) are

used to evaluate the overall performance. The remaining 66500

pairs are used in the subsequent robustness assessment.

� Metrics. We define three metrics to quantify the perfor-

mance of WiSil: true positive rate (TPR), false positive rate

(FPR), and accuracy. TPR describes the probability that WiSil
successfully detects a manipulated frame. It can be calculated

by:

TPR = 100%× N corr
mani

Nmani
, (13)

where N corr
mani and Nmani are the number of successfully

detected manipulated frames and the number of all tested ma-

nipulated frames, respectively. FPR represents the probability

that WiSil falsely recognizes a normal frame as a manipulated

one. It can be formulated as:

FPR = 100%× N inco
norm

Nnorm
, (14)

where N inco
norm and Nnorm are the number of the normal

frames that are wrongly detected as manipulated ones and the

number of all tested normal frames, respectively. Accuracy is

the probability that WiSil can correctly judge if a frame is

manipulated. It can be calculated as:

accuracy = 100%× N corr

Nall
, (15)

where N corr and Nall are the number of correctly identified

frames and the number of all tested frames, respectively. The

higher the TPR and the accuracy are, the better WiSil’s forgery

detection capability is. The lower the FPR is, the better WiSil’s
usability is.

A. Overall Performance

We first assess the TPR, FPR, and accuracy of WiSil in

terms of the human detection. For the dataset, we make a

[80%, 20%] random split for training and testing. We also

compare WiSil with two baselines: Dif-CNN and the state-of-

the-art WiFi-assisted video forgery detection system named

Secure-Pose [2]. The Dif-CNN is a cross-modal frame-CSI

comparison algorithm proposed by [2], which leverages a

CNN to determine if the silhouettes from the frame and CSI

are similar to each other by taking the silhouette differences as

inputs. The TPR, FPR, and accuracy are shown in Fig. 9, 10,

and 11, respectively. It can be observed that, no matter for

frame-placement attack or frame-modification attack, the TPR

of WiSil is similar to that of Secure-Pose. The overall TPRs

of WiSil and Secure-Pose are 95.9% and 94.9%, respectively.

Thus, WiSil outperforms Secure-Pose. Meanwhile, it can be

found that the TPRs of Dif-CNN for all attack types are

lower than 80%. This demonstrates that our semantic feature

extractor can effectively solve the problem of perspective



Fig. 15. TPR of cross-person experiments. Fig. 16. FPR of cross-person experiments. Fig. 17. Accuracy of cross-person experiments.

Fig. 18. Effect of the training set size on TPR. Fig. 19. Effect of the training set size on FPR. Fig. 20. Effect of the training set size on accuracy.

difference, while Dif-CNN cannot. From Fig. 10 we can find

that the FPRs of Dif-CNN are always high, even higher than

25%. However, for all attack types, the FPRs of WiSil and

Secure-Pose are less than 7%. The overall FPRs of them

are 3.6% and 4.7%, respectively. Hence, compared with Dif-

CNN and Secure-Pose, WiSil is more usable because it would

produce less false alarms. Likewise, the results in Fig. 11 show

that the overall accuracy of WiSil (95.8%) is better than that

of Dif-CNN and Secure-Pose.

Next, we evaluate the performance of WiSil in robot de-

tection. After adopting the same experiment method used in

human detection, we find that the accuracy of frame-placement

attack and frame-modification attack is 81.0% and 84.6%,

respectively. Apparently, this accuracy is not as high as that

of human detection. This is reasonable because the size of

the robot is far smaller than that of humans. However, such

accuracy, over 80%, is still high. More importantly, in terms

of robot detection, WiSil outperforms the state of the art (i.e.,

Secure-Pose), because Secure-Pose cannot detect the objects

other than humans.

B. Cross-domain Test

In practice, WiSil may be trained in Domain A (the domain

includes environments and persons) but used in Domain B.

In this case, the data of Domain B is not included in the

training set. Thus, it is necessary to evaluate WiSil’s cross-

domain performance.

� Cross-environment test. This experiment is conducted by

training WiSil on the data collected in the laboratory and

testing on that in the office. The TPR, FPR, and accuracy

are shown in Fig. 12, 13, and 14, respectively. It can be

found that the overall TPR of WiSil is as high as 82.7%.

The TPR of Dif-CNN is also high, i.e., 89.4%. It seems

that Dif-CNN outperforms WiSil. However, from Fig. 13 we

can find that the overall FPR of Dif-CNN is 35.2%, which

is unacceptable to a forgery detection system. The overall

FPR of WiSil is only 7.4%. Besides, the results in Fig. 14

show that the overall accuracy of WiSil (86.3%) is higher

than that of Dif-CNN (73.0%). Thus, WiSil outperforms Dif-

CNN. Meanwhile, it is reasonable that WiSil has good cross-

environment performance, because the wave front information

extracted by WiSil is environment-irrelevant. The wave front

is only related to the dynamics of the object in the monitoring

area. Besides, one possible reason why the cross-environment

accuracy is not as high as 95.8% is that we cannot remove

the noise from WiFi signals perfectly. However, since the

original WiFi signals used by the state of the art (Secure-Pose)

are environment-relevant, the robustness against environment

variation of WiSil is stronger than that of Secure-Pose.

� Cross-person test. In this experiment, we train WiSil on

the data of six persons and test on that of other persons. The

TPR, FPR, and accuracy are shown in Fig. 15, 16. and 17,

respectively. From these results, we draw the same conclusions

as the cross-environment experiments. It can be observed that,

although the overall TPR of Dif-CNN (91.4%) is better than

that of WiSil (80.6%), the overall FPR of Dif-CNN (35.2%)

is far worse than that of WiSil (3.8%). Meanwhile, the overall

accuracy of WiSil (91.5%) is far higher than that of Dif-CNN

(73.7%). Apparently, WiSil performs better than Dif-CNN in

cross-person tests. The reason why WiSil achieves high cross-

person accuracy is also that WiSil recovers silhouette from the

wave front which is only related to the object’s dynamics.



C. Effect of Training Set Size

The requirement for the training set size is related to the

user-friendliness of WiSil. Hence, in this experiment, we ex-

plore the effect of the training set size on WiSil’s performance.

Specifically, we vary the training set sizes (i.e., the number

of frame-CSI pairs) of both the U-Net and Siamese network-

based feature extractor from 500 to 1000 in step of 100. The

overall TPR, FPR, and accuracy are shown in Fig. 18, 19,

and 20, respectively. It can be found that all the TPR and

accuracy increase as the training set size, while the FPR

decreases with the increase of the training set size. When

the training set size is 500, WiSil already can achieve 93%+
accuracy. However, the accuracy of Dif-CNN is only 67.9%.

When the training set size reaches 1000, the accuracy can

achieve the maximum, 96.0%. Collecting 1000 pairs of frame-

CSI only consumes 100 seconds. Thus, users only need to

collect the data in a few minutes for training WiSil, which

means that WiSil is significantly user-friendly.

D. Latency

Since the latency is directly related to the real-time perfor-

mance, we assess the time cost used to identify one frame in

this part. The time cost for CSI processing mainly comes from

two components: (1) the silhouette extraction from CSI via U-

Net and (2) the semantic features extraction from silhouettes

of both frame and CSI via the Siamese network-based feature

extractor. With an NVIDIA GeForce GTX 1060 Graphic

Processing Unit (GPU), the average time costs of (1) and

(2) are about 0.007 and 0.02 seconds, respectively. Therefore,

with a good GPU, WiSil can achieve forgery detection for one

frame within 0.1 seconds. If a server with a better GPU is

adopted, such time cost could be lower. It means that WiSil
has outstanding real-time performance and can be used in live

video scenarios.

VIII. RELATED WORK

This work is mainly related to two kinds of techniques:

video forgery detection and WiFi-based sensing.

� Video forgery detection. With the rapid development

of IoT, video surveillance systems have been widely de-

ployed in many security-critical areas like banks to detect

and record illegitimate intrusions. However, poorly managed

video surveillance systems are reported vulnerable to frame

manipulation. An attacker could infiltrate into the surveillance

system and edit the frames to hide authentic activities (possibly

illegal). According to [2], traditional approaches to detecting

video forgery can be divided into two categories: watermarker-

based methods [2] and video forensics methods [7], [8],

[9], [10], [11]. However, the former requires the cameras to

have advanced modules, which cannot be achieved by many

camera manufactures. The latter can judge whether a video is

manipulated or not, but it cannot work in real time due to its

computation-rich feature extraction process. To realize real-

time counterfeit frame localization, Huang et al. [2] propose

to recover human poses from secure WiFi signals to perform

matching against that of frames. Nevertheless, their system is

able to detect human motions only, while other illegal activ-

ities, e.g., completed by robots or trained animals, would be

overlooked. In this work, we propose WiSil, a comprehensive

video forgery detection system based on WiFi channel. It is

capable of recovering all kinds of intentionally hidden clues

demonstrated by humans, robots, animals, etc.

� WiFi-based sensing. Thanks to the ubiquity of WiFi infras-

tructures, WiFi signals are exploited to enable a wide array

of applications [28], [29], [30], [31], [32], [33], [34] in the

recent decades. The pioneer [35] in this field uses an expensive

universal software radio platform (USRP) to collect WiFi

signals. Its sensing granularity is relatively coarse, i.e., it can

only detect the motion of the sensing target. Later on, as WiFi

sensing tools [17], i.e., CSI extraction tools, on commercial

NICs are developed, it has become a main trend of WiFi-based

sensing to utilize cheap standard WiFi devices equipped with

NICs as the signal transceivers. For example, WiGest [36] is

a gesture recognition system implemented on standard WiFi

devices. WiFall [37] employs COTS NICs to capture standard

WiFi signals to distinguish the signals of ‘fall’ from the other

three kinds of activities. In addition to the overhead reduction

on devices, machine learning techniques are also introduced

to improve the sensing granularity [38], [39], [40], [41]. For

instance, SignFi [38] leverages convolutional neural network

and takes as input the CSI to recognize small-scale hand sign

language. WiPose [42] utilizes convolutional and recurrent

neural networks to reconstruct 3D human poses from WiFi

sequences. Different from previous work, WiSil is a fine-

grained video-WiFi cross-modal forgery detection system that

can precisely outline the sensing target in surveillance.

IX. CONCLUSION

To secure video-based surveillance and forensics systems,

we propose a WiFi-assisted video forgery detection system

named WiSil. We noticed that the outline information of the

object in the monitoring area can be revealed by the wave front

of the WiFi signals. Therefore, WiSil first extracts the wave

front information from the CSI based on a theoretical model

of signal propagation. Then, WiSil leverages a pre-trained deep

network to recover the silhouette from the wave front. With a

Siamese network-based semantic feature extractor, WiSil can

calculate the matching degree between the silhouettes from

the frame and that of the CSI, achieving manipulated frame

identification. Extensive experiments show that WiSil can

achieve 95%+ tampered frame detection accuracy. Meanwhile,

WiSil is also able to detect objects other than humans. Besides,

WiSil is robust against environment and person variations.
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