

Mask Does Not Matter: Anti-Spoofing Face Authentication using mmWave without On-site Registration

Weiye Xu*^, Wenfan Song *^,Jianwei Liu *^, Yajie Liu *^, Xin Cui †, Yuanqing Zheng#, Jinsong Han *^, Xinhuai Wang†, Kui Ren *^

*Zhejiang University, Hangzhou, China ^ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China #The Hong Kong Polytechnic University, HongKong, China † Xidian University, Xi'an, China

MobiCom 2022

Background: Face authentication is important

Access Control

Online Payment

Individual Identification

Background: limitations of camera based Face authentication

Light Conditions

Spoofing Attacks

Occlusion

We want to explore a *new facial authentication technique*, which is resilient to complex lighting conditions, *friendly to mask-wearing users*, and meanwhile *resistant to spoofing attacks*.

Turn to mmWave

[Jiang et al. 2020]

Basic idea

Enhancing the sensing resolution

Moving along a trajectory

- **RF-based approaches usually require**
- ➢ on-site registration
- > designated RF devices
- > specific locations
- ➤ takes a long time

Complicated on-site registration prohibits the wide deployment!!

Virtual Registration Signal Generation

3D Face Model

Virtual Registration Signal

Stage 1: transmitting from the radar to the face

 $\tau = \frac{r_{m,n}}{c}$ \in : the reflection coefficient $\hat{S}_{m,n}$: the signal transmitted by $TR_{m,n}$

3D Face Model

Stage 2: reflecting from the face to the radar

Challenge 2: Robust FA under Variable Face-to-Device Distances

Imaging by SAR

3D Facial Image

 $w(x', y', z') = IFT_{3D}^{(k_x, k_y, k_z)} \{Stolt^{k_z} (s(k_x, k_y, k)k_z)\} = \varepsilon o_{\{1,1\}} (x_F, y_F, z_F) * A(x, y)$

Position of the planar antenna array Related to the face-to-radar distance distribution of the facial surface curvature $\rho * N$

PlaHamantFana Array **3DHEncial Facage** $s(x_{\rho*Ny}, y_1, t)$ 1 Eyes Nose ---Mouth $s(x_1, y_1, t)$ X N_{χ}

Observation

- "Bright Area" & "Dark Area"
- "Bright Area" → Larger Curvature
 "Dark Area" → Smaller Curvature
- Contour is stable

The contour of bright area can serve as the distance-resistant facial structure feature.

Challenge 3: Reliable Liveness Detection for Faces with Complex Structure

Extract Biomatric Features

Step 1:

Selecting relatively flat regions

$$A_{m,n} = \varepsilon \iiint \frac{o_{m,n}(F)}{2r_{m,n}} dx_F dy_F dz_F$$
$$\approx \varepsilon N^* \frac{o_{m,n}(F)}{2r_{m,n}} \longrightarrow 1$$
$$\approx \frac{\varepsilon N}{2r_{m,n}}$$

Step 2:

Biometric identification

$$\varepsilon = \frac{A_{m,n}}{N} \cdot 2r_{m,n}$$

Experiment Setup

Experiment Setup

COTS mmWave Radar Module

COTS mmWave Radar Module
mmWave radar board: TI IWR1642-Boost Data acquisition board :TI DCA1000EVM
2 transmitting antennas 4 receiving antennas 8 transceivers

2D Slide Rail

- Size of the 2D scanning plane: 200mm*240mm
- Scanning speed: 0.5m/s
- Number of rows:30
- Sweeping delay: 13s

Experiment Setup

Advanced mmWave Radar Module

2D Slide Rail

Advanced mmWave Radar Module 4 TI AWR1243P radar chips ٠ 9 transmitting antennas ٠ 12 receiving antennas 86 transceivers **2D Slide Rail** Size of the 2D scanning plane: 200mm*240mm Scanning speed: 0.5m/s Number of rows: 3 ۰ Sweeping delay: < 2s٠

Data Collection & Metrics

Data Collection

- 3 environments: seminar room & lab & and office
- 30 volunteers: 20 males & 10 females;

5 spoofers & 25 legitimate users

- Face-to-Device Distance: 15cm
- 120 authentication attempts for each volunteer

Metrics

- False Accept Rate (FAR)
- False Reject Rate (FRR)
- Equal Error Rate (EER)
- Authentication success rate (ASR)
- Receiver Operating Characteristic (ROC)
- Defense Success Rate (DSR)

- The performance of facial structure feature extraction method is outstanding.
- mmFace can generate virtual registration signals accurately while mitigating the overhead of user registration.
- The ROC and FAR-FRR curves also show the outstanding performance of mmFace.

- 12 volunteers
- 10cm to 20cm with a step of 2cm

- 12 volunteers
- ordinary masks, surgical masks, N95 respirator masks, and sponge masks

Robust to various face-to-device distancs

Robust to different types of masks

Robust to the occlusion area of masks

Attack and Defense

Spoofing attack realization

- Two types of 2D spoofing attacks
- Five types of 3D spoofing attacks

Defensive capability analysis

- All 2D spoofing attacks cannot deceive mmFace
- mmFace can distinguish real human faces from 3D-printed masks
- mmFace can effectively defend against 3D spoofing attacks under the distance variation

3D-printed Masks Human Face 25 300 20 250 Ledneucy 150 100 15 Threshold 10 100 50 0^{\downarrow} 0.2 0.4 0.6 0.8 1.0 0 Confidence

Confidence outputs of one-class SVM

Impact of distance on DSR

We develop a practical mmWave-based FA system that can still work well under the occlusion of face masks.

> We propose a virtual registration approach to avoid inconvenient on-site registration.

- > We explore a distance-resistant facial structure features to achieve robust FA and an effective biometric feature to realize reliable liveness detection.
- We prototype two typical modes of mmFace and demonstrate that mmFace can realize precise and robust authentication as well as defend against spoofing attacks.

Thank you! Q&A