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Human Gesture Recognition (HGR)

Of The Moment!

Smart Home

Virtual Reality

> WiFi-based solution:

* No need to wear sensors
* Less intrusive to user privacy
* And also ubiquitous

Uncomfortable Privacy Leakage



WiFi-based HGR

» Works under supervised learning scheme: Three phases

* Predefine base gestures




Unseen gestures are important. |icascalabiig

» Predefined base gestures cannot keep up with ever-evolving demands.
» Itis crucial to allow the user to adapt the system to their own preference.

However, in existing systems, to recognize unseen gestures ...
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Problem Definition

Assume that our system can recognize a few base gestures.

When introducing unseen gestures, is it possible that:
» User only needs to collect one signal sample for any unseen gestures.
» Model can fast adapt to new data without retraining the whole model.

In the literature, this problem falls into the category of few shot
learning -- Learning with a few samples.



Few shot learning

One shot is enough.

Few shot learning is easy for human. Why?

Because human beings have a large amount of prior knowledge.



Few shot learning: Basics

* In few shot learning context

* Training set is also called support set
 Testing set is also called query set
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Existing works: Meta-learning as few shot solution

* MetaSense (Gong et al, SenSys’19)
* New user and new device.
* RF-Net (Ding et al, SenSys’20)

* New environments.
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Challenge 1: Insufficient Prior Knowledge

» The base dataset in WiFi HGR system is usually small.
» Therefore, the prior knowledge is usually insufficient.

We use 20 gestures as base classes and apply meta-learning scheme, the
result of one shot recognition for unseen gestures is unacceptable:
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Challenge 2: Complicated Training Process

» Meta-learning, known as ‘learning to learn’, multiplies the complexity
of the regular training process.
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Our Solution -- OneFi

> Overview:

* A data augmentation method based on signal modeling — Enrich the prior knowledge
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Our Solution -- OneFi

> Overview:

* A data augmentation method based on signal modeling — Enrich the prior knowledge

* Asimilarity-based one-shot learning framework
— Alleviate Training Overhead

A self-attention-based backbone
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Our Solution -- OneFi

> Overview:

* A data augmentation method based on signal modeling — Enrich the prior knowledge

* Asimilarity-based one-shot learning framework
— Alleviate Training Overhead

A self-attention-based backbone
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Data Augmentation — Generate Virtual Gestures

* Generates additional, synthetic data by signal modeling

* The intuition here is that we could generate a ‘push left’ gesture by
rotating a ‘push forward’ gesture.
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Data Augmentation — Generate Virtual Gestures

 Question: How to rotate a gesture?

* Signal modeling is required!

 We compute the velocity distribution of the gesture, and apply
rotation on the velocity domain.



Frequency (Hz)

Data Augmentation — Generate Virtual Gestures

 We compute the velocity distribution of the gesture, and apply
rotation on the velocity domain.
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» Creating virtual gesture can enrich the
prior knowledge.

0 0.5 1.0 15 0 0.5 1.0 1.5
Time (s) Time (s)

virtual gesture real gesture



Our Solution -- OneFi

> Overview:

e A data augmentation method based on signal modeling
* Asimilarity-based one-shot learning framework ——— Alleviate Training Overhead

A self-attention-based backbone
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Similarity-based one-shot learning framework &
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* Lightweight one-shot learning framework
e Alleviating the training overhead



Our Solution -- OneFi

> Overview:

e A data augmentation method based on signal modeling

* Asimilarity-based one-shot learning framework

* A self-attention-based backbone — Alleviate Training Overhead
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WiFi Transformer: A self-attention-based backbone

Transformer Encoder Multi-Head Attention
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 Only needs O(1) sequential operations
 Reduces the overhead of training the feature extractor



Evaluation Setup

* Implementation
e Desktops with Intel 5300 NIC

* Collect 40 difference gesture classes.
e 20 as base dataset
* 20 as unseen dataset




Overall Accuracy
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* Six-unseen-gesture classification
» Accuracy for OneFi: 84.2%, 94.2%, 95.8% and 98.8% with 1/3/5/7 shots
* Qutperform MetaSense and RF-Net greatly



Effect of Virtual Gestures
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* Virtual gesture generation is effective in enriching the prior knowledge
and improving few-shot recognition accuracy.



Training Overhead
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* OnefFi entails significantly less training overhead.
* WiFi Transformer help to relieve the training overhead.



Summary of other evaluation results

* By adding more shots, OnefFi can achieve high accuracy in 20-unseen-
gesture classification.

* OneFi works well with small number of WiFi receivers.
* OneFi generalizes in cross-domain experiments.
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Conclusion

» We design OneFi, a one-shot WiFi HGR system. Extensive experiments
demonstrate its strong ability to recognize unseen gestures.

» We present a novel virtual gesture generation technique that
significantly enriches the prior knowledge.

»We propose a lightweight one-shot learning framework, together with
a self-attention based backbone to alleviate training overhead.

Thanks! & Questions?



