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ABSTRACT
Optical camera communication (OCC) holds potential for location-
aware data transfer, facilitating applications such as localization and
overlaying digital content for mixed reality experiences. However,
existing OCC designs commonly require a clean background for
reliable demodulation, rendering its use disruptive and impractical.
To this end, we propose WinkLink, a novel OCC system capable
of robust transmission behind complex backgrounds, even under
low signal-to-noise ratio (SNR) conditions. We address the key
challenge of extracting subtle signals in the lossy OCC channel by
designing a two-stage deep neural network and a context-aware
demodulation protocol. The proposed system is trained solely on a
synthesized dataset yet generalizes effectively to unseen real-world
backgrounds. Through experiments in 12 diverse environments,
we demonstrate that WinkLink successfully transmits OCC signals
under a low SNR of -20 dB, achieving a substantial 5.8 dB SNR gain.
This low SNR translates to an extended distance to 5.5× of baseline
(11m with a 10W LED transmitter) and negligible interference on
concurrent vision applications. Finally,WinkLink proves its efficacy
even when the device is moving, i.e., dynamic backgrounds, making
it ready for deployment on mobile devices.

CCS CONCEPTS
•Networks→Wireless access networks; •Computingmethod-
ologies→ Computer vision; •Human-centered computing→
Ubiquitous and mobile computing systems and tools; Mixed
/ augmented reality.

KEYWORDS
Optical Camera Communication; Low Signal-to-Noise Ratio; Mobile
Interaction

ACM Reference Format:
Rui Xiao1, Leqi Zhao1, Feng Qian2, Lei Yang2, Jinsong Han1*. 2024. Practical
Optical Camera Communication Behind Unseen and Complex Backgrounds.
In The 22nd Annual International Conference on Mobile Systems, Applications

*Jinsong Han is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0581-6/24/06
https://doi.org/10.1145/3643832.3661866

and Services (MOBISYS ’24), June 3–7, 2024, Minato-ku, Tokyo, Japan. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3643832.3661866

1 INTRODUCTION
The concept of converging the physical and digital worlds has
captured substantial attention from both industry and academia. A
trending example is the rise of mixed reality (MR) apps, which offer
users a truly immersive interaction experience [1, 16, 67]. While
integrating both worlds, a key problem to be addressed is to create a
robust mechanism for registering virtual content on specific objects
or at precise locations, without necessitating extensive training or
intricate setup [46, 51, 64].

To create such a cyber-physical hyperlink, optical camera com-
munication (OCC) emerges as a compelling technology [19, 34, 87].
OCC transforms everyday LED lights into transmitters, leveraging
mobile device cameras as receivers. Distinguished from high-speed
RF links, OCC inherently links received data to the transmitter’s
identity or location. By repurposing light, it eliminates the need for
an additional wireless front end, effectively rendering any object
near light as a portal to the digital realm. As a result, OCC ex-
tends the boundaries of connectivity for common camera-equipped
mobile devices, such as phones, tablets, and MR headsets.

However, despite its intriguing potential, the practical deploy-
ment of OCC faces challenges. The operation principle of OCC is
to encode data streams through modulating light blinking, which
is captured by cameras as stripe patterns for demodulation. These
stripes overlay the original photo, or background, where the back-
ground acts as "interference" for OCC [37, 81, 84]. Especially in
complex backgrounds, the stripe pattern becomes significantly
distorted. Consequently, current OCC implementations rely on
a common assumption: a clean background for demodulation, so
as to remove this interference. However, this assumption imposes
a significant constraint on deployment. Specifically, capturing a
clean background implies that the camera must be very close to a
clean reflector, typically within 40 cm [81]. That is, to receive OCC
data, the users have to go to a pre-defined, small region, requiring
additional guidance and considerable user effort. It also disrupts
the user experience, particularly when integrated with MR apps,
conflicting with the goal of creating an immersive experience.

Although previous approaches, e.g., CORE-Lens [50], attempt to
enable OCC in the presence of complex backgrounds, their practi-
cal implementation is constrained by the high signal-to-noise ratio
(SNR) requirement, which demands OCC signals to be significantly
stronger than ambient light. Therefore, the communication distance
is still confined, i.e., around 1.4 meters. Meanwhile, the resulting
strong stripe pattern is obtrusive, significantly degrading video
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Figure 1: Figure depicts a comparison between WinkLink
and traditional OCC.WinkLink features transmission behind
unseen and complex backgrounds under low SNR conditions.

quality and adversely affecting concurrent vision applications. Fi-
nally, the effectiveness of CORE-Lens-like approaches is reliant
on training the system with specific backgrounds, rendering them
unsuitable for unseen backgrounds and diminishing practicality.

To unlock a seamless experience, we proposeWinkLink, an OCC
system that supports robust transmission behind unseen complex
backgrounds even under low-SNR conditions. Figure 1 provides a
comparative illustration of the usage scenarios between traditional
OCC and WinkLink. WinkLink liberates users from the constraints
of clean or trained backgrounds, facilitating easy deployment. Its
low-SNR characteristic minimizes interference with concurrent vi-
sion applications. With a modest 10-watt light,WinkLink exhibits
an impressive transmission range exceeding 11 meters. Addition-
ally, our design accommodates dynamic backgrounds, enhancing
device mobility by eliminating the requirement for a consistent
background for decoding.

The development of WinkLink faces two primary challenges.
The first challenge is to extract subtle signals from unseen, dy-
namic, and complex backgrounds, a task that can be formulated as
an ill-posed problem [5]. What further complicates this challenge
is the uneven entanglement of the signals with the background.
Specifically, objects in the backgrounds carry different amounts of
signals due to their diverse reflectance and distances from the light
source [29]. The second challenge is the delayed response of the
signal, leading to the lossy OCC channel. This lossiness is primar-
ily caused by video compression algorithms, such as H.264 [28],
which introduce temporal dependencies between frames, resulting
in a delay in signal representation. This delay becomes particularly
pronounced under low-SNR conditions. Therefore, determining the
energy boundaries for accurate demodulation becomes challenging.

To address the first challenge, we leverage a fundamental prop-
erty of OCC-encoded images: the replication of signals within each
row of each color channel, leading to channel-wise and spatial-
wise correlations. Exploiting these correlations, we constrain the
ill-posed problem by formulating a loss in deep neural network
(DNN), which is also known for its capability to capture intricate
global correlations in images [90]. To ensure the scalability of Win-
kLink, especially in unseen backgrounds, we design a data synthesis
scheme based on an analysis of the light propagation model, en-
compassing critical factors like object reflectance and distance. By
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Figure 2: Figure depicts the example OCC applications.

leveraging online images to synthesize train dataset,WinkLink gen-
eralizes well to real-world OCC frames under unseen backgrounds
without requiring the manual collection of even a single image.
Finally, we overcome the challenge of delayed signal response with
a context-aware demodulation protocol. While traditional meth-
ods sorely depend on the signal intensity of the current frame
for demodulation, we additionally consider the intensity dispar-
ity between consecutive frames. This inclusion of the first-order
derivative is effective in alleviating the adverse impacts of video
compression and bolstering transmission accuracy.

We implement WinkLink1 and evaluate its performance by con-
ducting real-world experiments across 12 diverse environments.
Our evaluation, based on a substantial dataset of over 520,000 OCC-
encoded video frames captured by phones, showcases WinkLink’s
superior performance compared to previous approaches. Specifi-
cally, our findings indicate that:WinkLink 1) achieves symbol error
rates below 0.01 for various unseen backgrounds with an average
SNR of -20 dB, showing an SNR gain of over 5.8 dB, 2) exhibits
robustness in dynamic motion scenarios, 3) achieves a 5.5× im-
provement in communication distance, and 4) induces minimal in-
terference with concurrent vision applications. Through this work,
we hope to demonstrate the feasibility of simplifying communi-
cation deployment through machine learning assistance, thereby
suggesting a new avenue for providing system and networking
support for spatial and pervasive computing on mobile devices.

2 PROBLEM FORMULATION
Before detailingWinkLink’s design, we briefly introduce OCC. Its
core concept, SNR, is then defined and visualized. We then highlight
the issues with existing designs through preliminary experiments
and present our design goals.

2.1 OCC Preliminary
Optical camera communication (OCC) is a subset of visible light
communication [55, 89], aligningwith the IEEE 802.15.7 standard [10].
OCC stands out by utilizing commonly available commercial cam-
eras found in phones, tablets, and other mobile devices as receivers.
As shown in Figure 2, OCC has been employed in various ap-
plications, including indoor localization [60], MR content deliv-
ery [32, 64], and providing pervasive connectivity for low-end IoT
devices [25].
Rolling Shutter Mechanism.Most existing OCC systems rely on
the rolling shutter mechanism to receive themodulated LED blinking.
It is a characteristic feature of CMOS image sensors in commercial
cameras [47]. Instead of exposing the entire frame simultaneously,
1The source code and the synthetic dataset are released at https://github.com/ruixiao24/
winklink-mobisys2024.
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Figure 3: (a) and (b) illustrate that CMOS exposes the frame
column by column, which acts like a sliding-window sampler.
(c) illustrates that under RS-FSK modulation, the transmitter
emits light periodically, which results in spatial periodicity
in the captured frame.

rolling shutter sensors expose one column at a time, sequentially,
to reduce caching-related overhead, as illustrated in Figure 3 (a)
and (b). The intensity of each column can be understood as an
integration or a moving-average filter across the exposure duration
𝑡𝑒 . Assuming the sampling begins at time 𝑡 , the intensity of column
𝐴(𝑡) can be expressed as:

𝐴(𝑡) =
∫ ∞

−∞
𝐼𝐿 (𝜏)𝑔𝑟 (𝜏 − 𝑡)𝑑𝜏 . (1)

Here, 𝐼𝐿 (𝜏) represents the light intensity at time 𝜏 , and 𝑔𝑟 (𝜏 − 𝑡)
is a gate (rectangular) function that equals 1 during the interval
(𝑡, 𝑡 + 𝑡𝑒 ) and 0 otherwise. This sequential recording mechanism
empowers cameras to capture rapidly blinking light from the trans-
mitter, imprinting it onto the captured image as stripes.
RS-FSKModulation. A prevalent modulation technique in OCC is
rolling-shutter frequency-shift keying (RS-FSK)modulation, wherein
distinct symbols are conveyed by different frequencies of LED blink-
ing (e.g., 1 kHz for symbol 0 and 1.5 kHz for symbol 1) [37]. As
shown in Figure 3 (c), the temporal periodicity of the OCC transmit-
ter’s blinking translates into spatial periodicity within the captured
image. Let F denote the set of frequencies used for modulation.
Consequently, each symbol can encode ⌊log2 |F |⌋ data bits. In this
paper, WinkLink employs a 4-FSK modulation scheme, where each
symbol corresponds to 2 data bits.

2.2 SNR in OCC
We introduce the concept of the signal-to-noise ratio (SNR), which
represents the relative strength of the received OCC signal and the
accompanying background. When quantified in decibels (dB), the
SNR is defined as:

𝑆𝑁𝑅𝑑𝐵 = 10 log10

(
𝑃𝑠𝑖𝑔𝑛𝑎𝑙/𝑃𝑛𝑜𝑖𝑠𝑒

)
, (2)

where 𝑃𝑠𝑖𝑔𝑛𝑎𝑙 and 𝑃𝑛𝑜𝑖𝑠𝑒 denote the power of OCC signal and the
background, respectively. In the context of OCC, the signal power is
reflected in the value of individual pixels within images. Therefore,
𝑃𝑠𝑖𝑔𝑛𝑎𝑙 and 𝑃𝑛𝑜𝑖𝑠𝑒 are computed by summing all pixels correspond-
ing to a symbol in images.
Why SNR? SNR plays a central role in OCC, as SNR fundamen-
tally governs decoding complexity. While various factors con-
tribute to decoding complexity, SNR effectively encapsulates these
variables. Transmission power, distance, ambient light, camera
settings, and other factors, indirectly impact decoding complexity
by initially shaping SNR, solidifying SNR’s paramount importance.
Essentially, achieving transmission under lower SNR implies the
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SER < 0.01 SER > 0.01

(b)
SNR (dB)

Figure 4: Figure depicts (a) received frames at different SNRs
under clean and complex backgrounds, and (b) their respec-
tive SERs.

capability to transmit with reduced power, over longer distances,
in stronger ambient light, and with more flexible camera settings.
Visualizing Different SNRs. To visually illustrate the SNR in
OCC, we display images across varying SNR levels in Figure 4(a).
The noise power 𝑃𝑛𝑜𝑖𝑠𝑒 is computed when the OCC light is turned
off. When the OCC light is activated, we calculate 𝑃𝑛𝑜𝑖𝑠𝑒 + 𝑃𝑠𝑖𝑔𝑛𝑎𝑙 .
Subtracting these values yields 𝑃𝑠𝑖𝑔𝑛𝑎𝑙 and 𝑃𝑛𝑜𝑖𝑠𝑒 separately for
SNR computation. This subtraction is applied solely for SNR com-
putation and not for decoding. As SNR decreases, the stripe pattern
gradually weakens. The SNR across these images is manipulated by
adjusting the strength of ambient light and the OCC light source.
It is important to note that for a given SNR, there are multiple
parameter combinations that can result in the same SNR. However,
this visualization offers a basic understanding of how video frames
appear under different SNR conditions.

2.3 Issues with Existing Designs
To illustrate this, we conduct preliminary transmission experiments
and present results in Figure 4(b). When demodulating on clean
backgrounds, the signals are evenly distributed across the images.
By summing up all the rows to aggregate the signals, the symbol
error rate (SER) is lower than 0.01 for signals with SNR higher
than -12.8 dB. However, under complex backgrounds, the current
summing-up design fails to provide reliable results. The SER ex-
ceeds 0.01 when SNR drops below 1.1 dB. Therefore, existing de-
signs require either a clean background or a high SNR for robust
transmission, leading to various deployment limitations.

The requirement for clean backgrounds necessitates placing
the camera in proximity to a clean reflector, with the distance lim-
ited to within 40 cm [81]. Note that digital zoom proves ineffective
in addressing this concern, as it introduces signal loss during image
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Figure 6: Figure depicts the mixed symbol effect with differ-
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cropping [37]. Moreover, this setup is often impractical, such as
attempting to find such a reflector in a fully stocked grocery store.

The requirement for high SNR again constrains distance, ob-
served at 1.4 meters in CORE-Lens [50], as light intensity attenuates
rapidly with distance, following the inverse square law (intensity
∝ 1/distance2) [29]. Besides, the strong stripes lead to pronounced
video degradation caused by prominent stripe patterns. This degra-
dation significantly impairs core vision applications such as video
recording and vision-based sensing, applicable to both line-of-sight2
and non-line-of-sight OCC designs. Consequently, it renders vision
application and OCC transmission mutually exclusive.

2.4 Design Goal of WinkLink
Given the above limitations, our goal is to design an OCC system
capable of deployment in complex backgrounds under low-SNR con-
ditions. The design strives for scalability on unseen backgrounds.
Meanwhile, mobility and portability are essential objectives, re-
quiring WinkLink to operate well in mobile scenarios, such as in
handheld or moving cameras. This is also more challenging due to
dynamic backgrounds, making techniques like background subtrac-
tion difficult to apply. The ultimate aim is to facilitate the practical
and reliable deployment of OCC in real-world scenarios.

3 OVERVIEW AND CHALLENGES
We first present the design overview ofWinkLink (§3.1) and present
its main technical challenges (§3.2).

2In line-of-sight OCC designs, the background typically appears to be pure dark
in order to correctly expose the stripes from lights, rendering it incompatible with
concurrent vision application [19, 37, 87].

3.1 WinkLink Overview
We now provide a brief overview of WinkLink. The block diagram
of WinkLink is shown in Figure 5, composed of an LED transmitter
and a camera as the receiver. On the Transmitter side, the input
data bit stream is modulated using the RS-FSK due to its robustness
under low-SNR conditions.

The design of Receiver can be divided into two phases - Boot-
strapping andDeployment Phases. Bootstrapping Phase occurs offline,
entailing the generation of a substantial synthetic training dataset
encompassing diverse scenarios (§4.2). This dataset serves as the ba-
sis for training a deep signal extraction model capable of extracting
subtle OCC signals from encoded images (§4.1). In the Deployment
Phase, WinkLink operates online, leveraging the trained model
to demodulate the reflected OCC signals without requiring direct
line-of-sight between the transmitter and receiver [50, 81], even in
low-SNR conditions and against unseen backgrounds. After captur-
ing the images from the camera, the encoded signals are extracted
from the video frames using the trained model. The signals are then
demodulated via the Context-Aware Demodulation module (§4.3).

3.2 Design Challenges
Designing WinkLink involves three main challenges.

3.2.1 Challenge I: Dynamic Signal Extraction. Low SNR results
in a subtle stripe pattern in images, posing a highly challenging
extraction task. This problem is mathematically ambiguous or ill-
posed [5]. It can be formulated as to decompose the observed image
I into the linear combination of the signal-free background B and
the signal layer O:

I(x) = B(x) + O(x), (3)

where x = (𝑥,𝑦) is a 2D vector representing the coordinates (𝑥,𝑦)
of a pixel’s position in the image. Moreover, the background B is
dynamic, varying across different image I. To address this challenge,
we employ a DNN-Based Signal Extraction module for extracting
the signals (§4.1).

3.2.2 Challenge II: Scalable Training Data Preparation. High-quality
training data is essential for the scalability of systems utilizing ma-
chine learning, including WinkLink. WinkLink’s scalability can be
decomposed into four dimensions: 1○ unseen backgrounds, 2○ di-
verse stripe frequencies, 3○ varying SNRs, and 4○ different degrees
of mixed-symbol effects3 as illustrated in Figure 6. To achieve this
scalability, it becomes imperative to build a dataset that incorporates
these four types of diversities. However, it is laborious to obtain the
ground-truth signal layer O, especially under low-SNR conditions.
The manual assembly of such a diverse dataset is time-intensive
and impractical to conduct. WinkLink tackles this challenge with a
Training Data Synthesis module (§4.2).

3.2.3 Challenge III: Delayed Signal Response. The reaction of sig-
nals exhibits a temporal lag. To illustrate this phenomenon, we mea-
sure the intensity transition between continuously transmitting
symbol 1 and continuously transmitting symbol 0 in Figure 7 and
8. Ideally, the intensity associated with symbol 1 should instantly

3Mix-symbol effect refers to the scenario where a single image frame captures a
combination of two or more consecutive transmitted symbols, typically arising from
the asynchronization, or time offset, between the LED light and the camera receiver.
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increase/decrease upon its appearance/disappearance. However,
the observed images reveal a delayed response spanning up to five
frames, particularly pronounced in low-SNR conditions, indicating
an inverse relationship between response speed and OCC signal
SNR. This delay issue is attributed to the compression process in
video encoding. Specifically, video frames are categorized into intra
frames and inter frames (Figure 9). Inter frames are reliant on the
data within the intra frames, introducing temporal dependency and
thus causing a lag in the signal response. Therefore, accurately de-
termining intensity boundaries for demodulation poses a significant
challenge. Meanwhile, recording uncompressed video is impractical
due to latency, storage costs, and the need for WinkLink to operate
concurrently with vision applications. We address this challenge
by adopting a Context-Aware Demodulation module (§4.3).

4 DETAILED DESIGN
In this section, we present the design details ofWinkLink’s modules
shown in Figure 5.

4.1 DNN-based Signal Extraction
Thismodule takes as input the encoded image I(x) taken by cameras
and outputs one-dimensional OCC signals denoted as y ∈ R1×𝑊 ,
where𝑊 is the width of images. To address this ill-posed problem
(formulated in §3.2.1), we implicitly enforce constraints using DNNs
through the formulation of their associated loss functions [14].
Indeed, DNNs are particularly effective in our context due to a
critical feature of OCC-encoded images: the replication of signals
within each row of each color channel, resulting in channel-wise
and spatial-wise correlations. DNNs excel at capturing such intricate
global correlations in images. To enhance the model’s scalability to
unseen backgrounds, we adopt a two-stage network architecture,
which first extracts the signal layer O from image I, and then fuses
O into the one-dimensional signals y, as shown in Figure 10.
Stage I: Progressive Signal Extraction. The goal of the first stage
is to extract the signal layer O(x) from the input image I(x). To
achieve this, we introduce a stripe extraction model denoted as 𝑓 .
This model takes I as input and aims to output the background B.
Consequently, the signal layer O can be obtained using O = I − B,
which serves as the input of Stage II.

The primary design problem here is to devise an effective model
structure to efficiently extract subtle stripes. To address this, we
adopt the concept of progressive signal extraction. Specifically,
we utilize a series of extraction blocks, termed E-Blocks, to gradually

extract stripes from the input image I. Each E-Block follows an
identical structure, comprising two convolutional layers (one at the
beginning and one at the end) and three stacked residual blocks
(ResBlocks) [21]. Each ResBlock consists of two 3x3 convolutional
layers with 32 filters, followed by ReLU activation. The ResBlock
uses a skip connection, adding the original input to the second
convolutional layer’s output. To enhance parameter efficiency and
reduce storage overhead, we introduce cross-layer parameter
sharing [35]. Specifically, all E-Blocks share the same set of weights,
making one E-Block work iteratively. This approach significantly
reduces the number of parameters in the overall model, resulting
in a compact model size of approximately 2.5 megabytes.

When formulating the optimization objective tominimize the dis-
similarity between the output 𝑓 (I) and the background component
B, we consider both spatial and frequency domain distances.
This consideration arises from recognizing the column-wise peri-
odicity characteristics of OCC signals. The devised loss function,
L1, is expressed as follows:

L1 = | |𝑓 (I) − B| |2 + ||𝐹 (𝑓 (I)) − 𝐹 (B) | |2, (4)

where | | · | |2 is the Euclidean distance and 𝐹 represents the 1D
discrete Fourier transform (DFT) conducted along the horizontal
direction to capture column-wise periodicity [31]. The output of
the last E-Block yields the signal layer O, serving as Stage II’s input.
Stage II: Signal Fusion. After obtaining the signal layer O from
Stage I, fusing signals across rows to generate one-dimensional
OCC signals y remains challenging due to the unevenness of infor-
mation. Specifically, different pixels in O convey varying amounts
of signals due to differences in object reflectance, distance from
the transmitter, etc [4], making simple row summation unsuitable.
To address this, we introduce a second DNN model 𝑔 dedicated to
producing clean 1D OCC signals y. Its optimization objective is to
minimize the difference between the output and the ground truth
signal y𝑔𝑡 , which can be expressed as:

L2 = | |𝑔(O) − y𝑔𝑡 | |2 . (5)

In the second model 𝑔, the input O goes through six consecutive
ResBlocks, followed by a convolutional layer with Tanh activa-
tion [57]. After each block, 1D max pooling is applied along the
vertical dimension to distill and ultimately compress O into the
output signal y.

The two stages are trained end-to-end [39], optimizing jointly
through the sum of loss functions L = L1 + L2. We use the Adam
optimizer with a learning rate of 1e-04 for training.
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Figure 10: Figure depicts WinkLink’s two-stage signal extraction model (§4.1). WinkLink first extracts the signal layer O from
the encoded image I in Stage I, and then fuses O into the one-dimensional signals y in Stage II.
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Figure 11: Figure depictsWinkLink’s Training Data Synthesis
module (§4.2). This module synthesizes OCC-encoded image
I(x) with the known background image B(x) and signal y𝑔𝑡
serving as ground truth for training.

4.2 Scalable Training Data Synthesis
This module generates a synthetic dataset to train the DNN model.
To ensure its effectiveness on real-world test data, we minimize
the gap between synthetic and real data by leveraging precise light
propagation modeling, which accounts for (1) the light reflection
model under the Lambertian assumption [4] and (2) the light atten-
uation on varying distances. To make WinkLink generalize well in
real world, this process encompasses the four vital types of diversi-
ties discussed in §3.2.2. This module is only present in Bootstrapping
Phase and is not required to be deployed on user devices. Notably,
we completely eliminate the necessity for manual image collection
for training, as the entire dataset is synthesized.

The workflow of the module is depicted in Figure 11. Its inputs
comprise individual images, serving as background components
B, along with their corresponding depth maps D, sourced from an
online dataset [66]. The module’s outputs consist of synthesized
encoded images I with ground truth stripe y𝑔𝑡 and background B.
Stripe Pattern Generation. The first step is to generate the 1D
signal y𝑔𝑡 with given frequencies, following Equation 1. This pro-
cess accounts for two diversities: OCC frequency diversity and
mixed-symbol diversity. The former involves selecting frequencies
from a uniform distribution between 1 KHz and 3 KHz. To intro-
duce mixed-symbol diversity, a border point is randomly chosen
among columns. Then, distinct frequencies are randomly assigned
to the left and right sides of this border point. The resulting y𝑔𝑡 is
then expanded vertically to create the 2D stripe pattern Stripe(x),
corresponding to the received frame under clean backgrounds.
Illumination Map Computation. Our second step is to employ
the stripe pattern Stripe(x) and the depth map D(x) as inputs to
compute the illumination map SOCC (x). This map characterizes
the received light intensity from the OCC transmitter at each pixel.
Leveraging the depth map D(x), which provides depth information
for each pixel, along with a randomly chosen transmitter point
𝑟 and the principles of the inverse square law [29], we compute
SOCC (x) as:

SOCC (x) = Stripe(x)/|D(x) − 𝑟 |2 . (6)

Note that the receiver device is not required to possess depth-
sensing capabilities during deployment, as the depth map is solely
utilized for training data synthesis and is not a requisite when
deployingWinkLink on mobile devices.
Coupling Illumination with Input Image. Finally, we generate
the encoded image I(x) by superimposing SOCC (x) onto the input
image B(x). This process takes into account the fact that when
light interacts with a surface, energy loss occurs, leading to a trans-
formation of the original wavelength directed toward the observer.
To simulate this process, we utilize the Lambertian assumption [4].
Under this assumption, an image captured by a camera can be mod-
eled as the element-wise product of a reflectance component R and
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illumination component S, i.e.:

I(x) = R(x)S(x), (7)

The illumination component S can be further decomposed into
S(x) = S0 (x) + 𝑘 ∗ SOCC (x), where S0 (x) and SOCC (x) correspond
to illumination arising from ambient light and the OCC transmit-
ter, respectively. The parameter 𝑘 is to accommodate various SNR
situations, yielding:

I(x) = R(x) (S0 (x) + 𝑘 ∗ SOCC (x)) . (8)

Considering that B(x) = R(x)S0 (x), we have:

I(x) = B(x) + 𝑘 ∗ R(x)SOCC (x) . (9)

We obtain R(x) from B(x) via intrinsic decomposition [14], thus
obtaining the output I(x). Finally, we manipulate the value of 𝑘
to achieve SNR variation across the range from -14 dB to -25 dB,
thereby attaining diversity in SNR levels.

4.3 Context-Aware Demodulation
This module takes as input the extracted 1D signals y from the
DNN model to output a demodulated bit stream, utilizing a context-
aware demodulation approach. The key insight is that, despite
the variability of absolute OCC intensity due to delayed signal
response (§3.2.3), the increase/decrease in intensity can assist as an
additional indicator for demodulation. By combining the absolute
intensity with its first-order derivative between consecutive frames,
we significantly enhance the transmission robustness under the
lossy channel (as shown in §5.3.2). This process unfolds as follows.

For each symbol window denoted as 𝐾 , a 1D fast Fourier trans-
form (FFT) is applied to compute the intensities 𝑃𝐾

𝑖
of frequency

components for each symbol, where 𝑖 = 1, . . . , 4, representing
distinct frequency components. Subsequently, z-normalization is
conducted on the intensities of each symbol across all received
symbols [61]. The normalized symbol intensity, denoted as 𝑃𝐾

𝑖
, is

defined as 𝑃𝐾
𝑖

= (𝑃𝐾
𝑖
− 𝜇𝑖 )/𝜎𝑖 , wherein 𝜇𝑖 =

∑
𝑘 𝑃

𝐾
𝑖
/𝑁𝑠 represents

the mean of intensities across all symbol windows, 𝑁𝑠 is the total
number of symbols, and 𝜎𝑖 =

√︃∑
𝑘 (𝑃𝐾𝑖 − 𝜇𝑖 )2/(𝑁𝑠 − 1) represents

the standard deviation across all symbol windows.
We then determine the symbol based on the intensity change.

Specifically, when demodulating window 𝐾 , we calculate the first-
order derivative Δ𝑃𝐾

𝑖
= 𝑃𝐾

𝑖
− 𝑃𝐾−1

𝑖
. If Δ𝑃𝐾

𝑖
exceeds a predefined

threshold denoted as 𝑡ℎ𝑟𝑒𝑠ℎ𝑖 , that is, Δ𝑃𝐾𝑖 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑖 , we recognize
symbol 𝑖 as the decoded symbol. In practice, the threshold is set as
𝑡ℎ𝑟𝑒𝑠ℎ𝑖 = 0.5 ∗ 𝜎Δ𝑃𝑖 , where 𝜎Δ𝑃𝑖 represents the standard deviation
of Δ𝑃𝐾

𝑖
. The value 0.5 remains a fixed parameter and does not

change. If multiple frequency components satisfy Δ𝑃𝐾
𝑖

> 𝑡ℎ𝑟𝑒𝑠ℎ𝑖 ,
we demodulate the symbol as the frequency component with the
highest value, i.e., 𝑖 = arg max𝑖 Δ𝑃𝐾𝑖 . Finally, in cases where no
frequency component has a first-order derivative exceeding the
threshold, we resort to demodulation by comparing the absolute
value of the normalized symbol intensity and select 𝑖 = arg max𝑖 𝑃𝐾𝑖 .
By doing so, WinkLink achieves robust demodulation under the
lossy OCC channel.

Arduino LED LightDC Power
Supply

Figure 12: Figure depicts the prototype of WinkLink trans-
mitter. The LED light is modulated using an Arduino Uno
and powered by a DC power supply.

5 EVALUATION
We present the evaluation of WinkLink through comprehensive
real-world experiments, demonstrating its effectiveness.

5.1 Experimental Setup
Prototype Implementation. As shown in Figure 12, we imple-
ment the prototype with a low-cost Arduino Uno board [3]. It is
connected to a MOSFET component. The Uno’s microcontroller
has hardware support for pulse width modulation (PWM) and thus
can be used to generate square waves with specific frequencies.
We implement 4-FSK modulation by adjusting the timer register to
vary the OCC signals from 1020 Hz to 1980 Hz, maintaining a 50%
duty cycle. The LED light is powered by a DC power supply.
Train Dataset Synthesis.WinkLink’s signal extraction network
is trained on a synthetic dataset derived from the NYU Depth V2
dataset [66], containing 1,449 dense RGB-depth image pairs from
diverse indoor scenes. We leverage all 1,449 images for varied back-
grounds and synthesize each into 5 training samples, introducing
variations in stripe frequency, SNR, and symbol mixtures. Stripe
frequencies are randomly set between 1 KHz and 3 KHz, with SNRs
from -14 dB to -25 dB, resulting in a dataset of 7,245 images. Train-
ing is conducted using PyTorch on a server with dual NVIDIA RTX
3090 GPUs over 200 epochs.
Test Dataset Collection. We collect test dataset with a total of
520,000 distinct frames under 12 diverse environments. During
collection, each symbol persists for 1/60 seconds, enabling a trans-
mission rate of 120 bits per second (bps) with 4-FSKmodulation. Our
default receiver is a Huawei P40 Pro phone, utilizing themcpro24fps
app for video recording [27, 53]. We also evaluate WinkLink across
varying phone models, transmission rates, distances, and motion
speeds (§5.4). For video recording, we set a frame rate of 60 frames
per second (FPS) and an exposure time of 1/1200 seconds, using auto
ISO4 for well-lit images, at a resolution of 1920×1080 pixels. Frames
are resized to 512×512 to fit WinkLink’s signal extraction model.
4Based on the principles of the exposure triangle [58], we adjust ISO to balance the
light for fixed exposure settings. For example, a scene well-exposed at 1/120 second
and ISO 100 can maintain its exposure quality at 1/1200 second with an ISO of 1000,
compensating for the reduced light due to the shorter exposure time. Devices like the
Huawei P40 Pro, with a maximum ISO of 6400 (expandable in low light), demonstrate
the ability to adeptly adjust ISO for various lighting conditions.
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Figure 13: Figure depictsWinkLink’s overall performance in 12 diverse environments with mSNRs annotated.

Note thatWinkLink is trained upon an online dataset, meaning that
all the backgrounds in the tests are unseen. We conduct this study
upon the approval of our institution’s Institutional Review Board.
Performance Metrics. We define two metrics for evaluation: the
Symbol Error Rate (SER) and the minimum Signal-to-Noise Ratio
(mSNR). SER is computed using the formula 𝑆𝐸𝑅 = 𝑁𝑒𝑟𝑟𝑜𝑟 /𝑁𝑠𝑦𝑚𝑏𝑜𝑙 ,
where 𝑁𝑒𝑟𝑟𝑜𝑟 represents the number of symbol errors and 𝑁𝑠𝑦𝑚𝑏𝑜𝑙
represents the total number of transmitted symbols.mSNR denotes
the minimum SNR value at which the SER drops below 0.01, which
is a valuable indicator of an acceptable SNR threshold.

5.2 Overall Performance
5.2.1 Data Preparation. To ensure diversity and minimize bias, our
data collection encompasses a varied dataset. We assessWinkLink’s
performance through experiments in 12 distinct environments, as
shown in Figure 13, featuring a range of textures, materials, and
transmitter & receiver positions (distances from 2.9m to 5.9m). Am-
bient light is kept constant within each environment but varies
across the 12 environments, ranging from 40 to 800 lux. We col-
lect 30,000 frames per environment under different SNRs, totaling
360,000 unique frames for analysis. SNR variations are achieved by
adjusting LED’s power from 0 to 5 watts. It is important to note that
all backgrounds are unseen forWinkLink, and all the test frames
are genuinely captured by phone cameras and not synthetic.

5.2.2 Overall Results. We demonstrate WinkLink’s overall com-
munication performance under unseen and complex backgrounds
under low-SNR conditions. We set the baseline to be previous FSK

systems, which involves summing up the rows to aggregate signal
for demodulation [37, 60]. It is chosen due to its superior perfor-
mance in low-SNR conditions compared to other modulation de-
signs. Figure 13 depictsWinkLink’s performance in each individual
environment, showing SER curves with respect to the SNR. We also
denote the mSNRs ofWinkLink on the plots.

Our experiments reveal thatWinkLink achieves an averagemSNR
of -20.0 dB. While mSNR varies across different environments due
to the impact of background characteristics, such as texture and
light distribution, WinkLink consistently outperforms the baseline in
all scenarios and across all SNRs. The baseline only achieves SERs
lower than 0.01 in five environments, indicating poor performance
in the other seven environments where mSNR is not applicable. In
where mSNR is applicable,WinkLink offers a noteworthy SNR gain
higher than 5.8 dB, highlighting its capability of robust transmis-
sion behind arbitrary backgrounds. The lowered SNR requirement
significantly mitigates the deployment constraints encountered by
prior OCC systems and substantially enhances the feasibility of
practical OOC deployment.

5.3 Performance of System Modules
We now evaluate the individual modules ofWinkLink.

5.3.1 DNN-based Signal Extraction Module. We evaluate this mod-
ule (§4.1) in the following three aspects.
SubNetworkDesignEffectiveness. In evaluating theDNNmodel’s
design, we conducted an ablation study comparing two baseline sce-
narios: WinkLink without the iterative E-Block design (D1), where
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Figure 14: Figure depicts mSNRs of dif-
ferent signal extraction models.
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Figure 15: Figure depicts mSNRs under
different input sizes.
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Figure 16: Figure depicts the effect of
context-aware demodulation.

only one E-Block pass is performed, andWinkLink without its two-
stage framework (D2), employing only Stage II. For D2, Stage II
processes encoded images as inputs to directly produce 1D signals,
optimizing solely for L2 loss. The mSNRs are depicted in Figure 14.
Conditions where the SER consistently exceeds 0.01 (i.e., mSNR not
applicable) are marked with ‘✗’ on the plot. The results demonstrate
the effectiveness of the two design components, with an average
mSNR enhancement of 1.5 dB and 2.5 dB, respectively.
Comparison with CORE-Lens. We also compare our overall net-
work design with the VAE-GAN network used in CORE-Lens [50],
which we retrained with our synthetic dataset due to the unavail-
ability of its original data and weights. In Figure 14, VAE-GAN
shows ineffectiveness in all but one scenario, indicating its inad-
equacy in low-SNR conditions. This performance disparity can be
attributed to the differing core design logic: CORE-Lens uses a gen-
erative model, while WinkLink relies on image translation, which is
more effective in low-SNR conditions as it allows the model to learn
and adapt to diverse backgrounds, converging effectively without
the need for a prohibitively large dataset.
Impact of Input Size. By default, we resize images to 512 × 512
for network input. To investigate the impact of input size on Win-
kLink’s performance, we examine three sizes: 512 × 512, 256 × 256,
and 128 × 128. The corresponding mSNR values are shown in Fig-
ure 15. Smaller sizes result in average mSNR increases of merely
0.13 dB and 1.08 dB, respectively. This highlights WinkLink’s com-
patibility with small input sizes, allowing for reduced processing
time without significant performance loss (detailed in §5.5).

5.3.2 Context-Aware Demodulation Module. Recall that the main
goal of this module (§4.3) is to address the delayed signal response
by using the first-order derivative of symbol intensity for demodu-
lation. We now compareWinkLink’s performance with and without
the module. Without the module, we resort to using only the inten-
sity for demodulation. In Figure 16, the inclusion of this module
consistently yields better results compared to its absence, with an
average mSNR improvement of 2.84 dB, highlighting the impor-
tance ofWinkLink’s Context-Aware Demodulation module.

5.4 Differing Experimental Conditions
We evaluate WinkLink’s performance across various experimental
conditions in the first environment, with SNR variations achieved
by altering LED power between 0 and 5 watts, consistent with §5.2.

5.4.1 Varying Camera Devices. We evaluateWinkLink’s efficacy
across three distinct phone models: iPhone 14 Pro (iOS 16), Huawei

P40 Pro (Harmony OS), and Samsung Galaxy S21 (Android 12), with
respective readout durations of 11.7 𝜇s, 4.96 𝜇s, and 11.3 𝜇s [2, 27, 63].
Video recordings are conducted through the Protake app for iPhone,
and the mcpro24fps app for Huawei and Samsung devices [53,
68]. As illustrated in Figure 17, the mSNRs are -21.9 dB, -19.4 dB,
and -19.8 dB, for the three phones, respectively. This consistent
performance is attributed toWinkLink’s independence from device-
specific knowledge.

5.4.2 Varying Motion Speed. WinkLink’s functionality extends to
scenarios involving cameras in motion with dynamic backgrounds.
We conduct experiments under varying camera velocities: 0.5 m/s,
1 m/s, and 2 m/s—representative of ordinary walking speeds. The
SERs are measured across six SNRs levels from -15.5 dB to -22.6 dB,
presented in Figure 18. Notably, the SERs are consistently below
0.001 until the SNR decreases to -22.4 dB, which is below the mSNR
of stationary camera scenario. WinkLink’s resilience on receiver
mobility also indicates its capability to manage scenarios with mov-
ing users or objects, due to its ability to handle background varia-
tions. Receiver mobility, which alters every pixel of the background,
presents a higher challenge than scenarios with moving objects
that only impact a portion of the scene. The core of WinkLink is to
employ a single-frame strategy, extracting signals based on individ-
ual frames rather than using multi-frame techniques that depend
on a constant background [19, 37]. Consequently, this approach
ensures WinkLink’s consistent performance amidst the dynamic
variations common in real-world environments.

5.4.3 Varying Transmission Rates. We assess WinkLink’s perfor-
mance across different transmission rates by altering symbol du-
rations while maintaining a consistent video frame rate of 60 FPS.
With symbol lengths of 1/30s, 1/60s, and 1/120s, we achieve trans-
mission rates of 60 bps, 120 bps, and 240 bps, respectively. The
results in Figure 19 show mSNRs of -22.7 dB, -22.6 dB, and -17.2 dB.
Transmitting at 240 bps requires a higher SNR due to symbol loss
caused by frame gaps, a recognized issue with phone cameras, par-
ticularly pronounced when symbol duration is shorter than frame
duration [23]. However, -17.2 dB in 240 bps is already significantly
lower than the mSNR of baseline in 120 bps, showingWinkLink’s
effective demodulation under higher transmission rates.

5.4.4 Varying Communication Range. To highlight the benefits of
WinkLink’s reduced SNR requirements, we evaluate its performance
over different distances using LEDs of 5 watts and 10 watts. The
ambient light intensity is held constant at 450 lux, reflecting typical
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Figure 17: Figure depictsWinkLink’s per-
formance using different phones as the
receiver.
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Figure 18: Figure depicts WinkLink’s
performance under different movement
speeds.
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Figure 19: Figure depictsWinkLink’s per-
formance under varying transmission
rates.

−25

−20

−15

−10

SN
R 

(d
B)

1 3 5 7 9 11
Distance (m)

0.0

0.2

0.4

0.6

SE
R

SER (WinkLink) SER (Baseline) SNR

(a) 5W LED

−25

−20

−15

−10

SN
R 

(d
B)

1 3 5 7 9 11
Distance (m)

0.0

0.2

0.4

0.6

SE
R

SER (WinkLink) SER (Baseline) SNR

(b) 10W LED

Figure 20: Figure depicts WinkLink’s performance at differ-
ent distances when the LED is (a) 5W and (b) 10W.

indoor conditions. We compareWinkLink with the same baseline as
§5.2, presenting SERs and SNRs across distances in Figure 20. With
the 5-watt LED, WinkLink consistently attains SERs below 0.01 up
to a distance of 7 meters, with an SNR of -22.2 dB. For the 10-watt
LED, SERs stay below 0.007 up to 11meters – the maximum distance
achievable within our laboratory setting. These results highlight
WinkLink’s capability to maintain reliable communication over ex-
tended ranges, fitting well within the scope of moderate room sizes.
In larger environments such as museums, where separate lighting is
common for exhibits, WinkLink can leverage these individual light
sources for effective communication across the space. Additionally,
employing larger power LEDs or multiple LED lights can extend
the transmission range even further.

5.5 Storage Overhead and Running Time
We evaluate the storage overhead and running time of WinkLink’s
demodulation process, considering varying input sizes and three
distinct device types: an RTX 3090 GPU, an Intel Xeon 4210R CPU,
and a Huawei P40 Pro phone. The results are presented in Table 1.

Table 1: Storage overhead and running time.

Input Size Time Model SizeGPU CPU Phone
512 × 512 1.36ms 45.9ms 1491ms 2.68MB
256 × 256 0.36ms 11.7ms 348ms 2.49MB
128 × 128 0.09ms 3.38ms 77ms 2.45MB

Table 2: Experiment setups for the four vision tasks.

DataSet # Images Model
Image

Classification ImageNet [15] 50,000 ResNet [21]

Object
Detection CoCo [48] 5,000 Faster R-CNN [62]

Instance
Segmentation CoCo [48] 5,000 Mask R-CNN [20]

Semantic
Segmentation CoCo [48] 5,000 FCN [65]

Upon GPU execution, the processing time amounts to a mere 1.36
milliseconds. Remarkably, upon phone execution, employing an in-
put size of 128× 128 reduces the processing time to 77 milliseconds,
achieving low latency on mobile edge. Referring to observation in
§5.3.1, where adopting 128 × 128 incurs a small mSNR increase of
1.08 dB – an acceptable trade-off, we recommend its implementation
for on-device inference scenarios. Techniques like model compres-
sion can further expedite on-device inference [24, 33, 49] (see §6
for further discussion). Conversely, when potent edge servers are
available, larger input sizes can be utilized for enhanced demod-
ulation robustness [91]. Meanwhile, the model’s compact size of
2.5 MB ensures a small storage overhead. These attributes position
WinkLink as a practical and deployable solution.

5.6 Interference on Vision Systems
WithWinkLink’s low-SNR characteristics, we envision its opera-
tion with concurrent vision applications. We evaluate OCC’s in-
terference with vision systems by examining four representative
vision tasks: image classification, object detection, instance seg-
mentation, and semantic segmentation. For each task, we utilize
accuracy, box mean average precision (MAP), mask MAP, and mean
intersection-over-union as evaluation metrics, and employ ResNet,
Faster R-CNN, Mask R-CNN, and FCN as the respective vision
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Figure 21: Figure depicts the inference of OCC on four repre-
sentative vision tasks at different SNR levels.

models [20, 21, 62, 65]. Dataset details for each task are outlined
in Table 2. We synthesize OCC signals on images, spanning SNRs
from -20 dB to 0 dB with increments of 5 dB. The results, illustrated
in Figure 21, show that as SNRs increase to -10 dB, -5 dB, and 0 dB,
the average relative degradation over four tasks is 11.2%, 29.2%, and
56.8%, respectively. However, at -20 dB, i.e.,WinkLink’s operational
SNR, the average relative degradation is only 3.4%, showing that
WinkLink has minimal interference with vision tasks and enables
effective concurrent operation.

6 DISCUSSION
We now present important discussion points ofWinkLink.
Domain Gap Between Synthetic and Real Data.While we have
included most of critical factors of light propagation, we acknowl-
edge potential domain gap between synthetic and real data, particu-
larly concerning real-world noise and distortions. Indeed, rendering
a scene under specific light condition remains a challenging prob-
lem in the field of computer graphics [79]. While domain gap does
affect model robustness, it is manageable because WinkLink works
well in 12 diverse unseen environments, demonstrating its ability to
learn transferable knowledge from synthetic data to handle the ma-
jority of real-world cases. In rare corner cases, practical solutions
such as fine-tuning the model based on real captured instances,
are readily implementable. The current model, trained solely over
synthetic data, provides a solid base for further refinement.
Data Rate and Collaborative Connectivity. The upper bound
of WinkLink’s transmission capacity is constrained by its low-SNR
characteristics, as stipulated by Shannon’s capacity theorem [11].
Currently,WinkLink enables location-aware data transfer at 240 bps,
reusing existing light infrastructure to support spatial localization
and pervasive connectivity [34, 37, 64]. It can facilitate applications
such as redeeming discount vouchers in grocery stores or monitor-
ing power consumption in smart homes, with optional visualization
through MR.WinkLink can also facilitate seamless connection es-
tablishment through the transmission of short-lived tokens. These
moderate-size payloads can be directly delivered throughWinkLink.
However, WinkLink is not a one-size-fits-all solution for connectiv-
ity. For applications requiring larger data transfer, such as delivering
menus in restaurants or interactive dinosaur models in museums,

we envisionWinkLink transmitting IDs for cloud service lookup,
followed by fetching larger payloads over faster connections like
cellular networks. Their operation in distinct spectrum enables
easy coexistence [62], allowing each technology to complement
and leverage its unique strengths.
Computational Cost. While high-resolution video recording and
on-device DNN inference are resource-intensive,WinkLink effec-
tively reduces these demands by supporting low-resolution inputs
like 128x128, lowering computational load and saving battery life.
As demonstrated in §5.5, the inference latency is 0.09 ms on cloud
and 77 ms on-device, with potential for optimization. On-device
DNN inference optimization is an active research field. At the model
level, key strategies include model compression [6, 18, 22] and neu-
ral architecture search [69, 75]. At the system level, leveraging
heterogeneous processors, cache optimization, and adaptive of-
floading [30, 36, 52] holds great promise. These ongoing efforts,
coupled with evolving mobile processor capabilities, especially in
GPUs and NPUs, will significantly enhance inference speeds.
Interference between Multiple OCC Links. The extended com-
munication range ofWinkLink may lead to interference between
adjacent OCC links. However, the inherent space division property of
OCC serves as a natural countermeasure [19, 34, 84]. Physical prox-
imity to a specific light can enhance its signal strength, effectively
prioritizing its content and thereby minimizing interference. Tech-
niques like beam steering, e.g., using devices such as light shades
to focus the LED beam, further refine signal targeting and mini-
mize overlap. Adjusting light intensity and employing frequency
division, which allocates unique frequency bands to different sig-
nals, are additional effective strategies to mitigate interference and
ensure coexistence among neighboring transmitters.
Integrated Sensing and Communication on Vision. WinkLink
utilizes the vision modality for communication while minimizing
impacts on vision applications (§5.6). Therefore,WinkLink sheds
new light on the integration of sensing and communication (ISAC)
in the vision region. UnderWinkLink, OCC becomes a valuable addi-
tional feature of the camera, enhancing its value without imposing
limitations on its original purpose. Future work will aim to expand
these integrated capabilities. A potential issue, particularly in MR
settings, is the visibility of stripe patterns, which could impact user
experience. To solve this, note thatWinkLink’s DNNmodel not only
extracts OCC signals but also clears stripe patterns and provides
a clean background. This dual-functionality suggests a promising
avenue for development, potentially enhancing video quality by
removing visual disturbances while extracting OCC signals.

7 RELATEDWORK
We now present related work withWinkLink.
Optical Camera Communication. Researchers have focused on
enhancing the throughput of OCC through modulation optimiza-
tion [9, 25, 80]. Recent advancements have extended OCC to under-
screen cameras [82, 83]. The LED-camera channel has been explored
in diverse applications including indoor localization [34, 84, 92],
and hand pose reconstruction [87]. The closest to our work is CORE-
Lens [50], which enables object recognition under OCC transmis-
sion. While CORE-Lens operates at a limited distance of 1.4 meters
and with a restricted set of six trained backgrounds (e.g., a pink
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wallpaper), WinkLink excels in low-SNR transmission under ar-
bitrary unseen complex backgrounds, extending the operational
range while ensuring seamless compatibility with four standard
vision applications without modifications.
Communication and Sensing with Light. Beyond OCC, light
has been utilized as a communication medium in various contexts,
such as LED-photodiode channel [55, 89], screen-camera chan-
nel [26, 40, 56, 59, 71, 86], backscatter communication [70, 73, 76, 77],
and air-water communication [7, 8]. Researchers have also lever-
aged the radio-frequency side channel to enhance or intercept light
communication [12, 13, 54]. Besides, light has been employed as
a sensing medium, enabling applications like indoor position and
orientation estimation [17, 38, 74, 85], inertial tracking [88], glucose
and blood pressure monitoring [42, 72, 78], gaze tracking [44, 45],
and human sensing [41, 43].

8 CONCLUSION
We proposeWinkLink, a novel OCC system that operates under un-
seen and complex backgrounds, all while maintaining low-SNR re-
quirements. Through our implementation and extensive real-world
evaluation across 12 diverse environments comprising 520,000
frames, we demonstrate the effectiveness of WinkLink in adapting
to dynamic surroundings, covering longer distances, and minimiz-
ing interference with vision applications, establishing WinkLink as
a practical and reliable OCC system for real-world scenarios.
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